Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 9

Answer

$a)$ $\vec{u}\cdot\vec{v}=-1$ $b)$ $\theta\approx97^{\circ}$

Work Step by Step

$\vec{u}=\langle3,-2\rangle$ $,$ $\vec{v}=\langle1,2\rangle$ $a)$ To find $\vec{u}\cdot\vec{v}$, multiply corresponding components and add: $\vec{u}\cdot\vec{v}=(3)(1)+(-2)(2)=3-4=-1$ $b)$ The angle between two vectors is given by the following formula, $$\theta=\cos^{-1}\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$$ where $\vec{u}\cdot\vec{v}$ is the dot product of $\vec{u}$ and $\vec{v}$, and $|\vec{u}|$ and $|\vec{v}|$ are the magnitudes of $\vec{u}$ and $\vec{v}$, respectively. Find the magnitude of both $\vec{u}$ and $\vec{v}$: $|\vec{u}|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{9+4}=\sqrt{13}$ $|\vec{v}|=\sqrt{1^{2}+2^{2}}=\sqrt{1+4}=\sqrt{5}$ Substitute the known values into the formula and evaluate: $\theta=\cos^{-1}\dfrac{-1}{(\sqrt{13})(\sqrt{5})}=\cos^{-1}\dfrac{-1}{\sqrt{65}}\approx97^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.