Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 29

Answer

$a)$ proj$_{\vec{v}}$ $\vec{u}=\langle1,1\rangle$ $b)$ $\vec{u}_{1}=\langle1,1\rangle$ $;$ $\vec{u}_{2}=\langle-3,3\rangle$

Work Step by Step

$\vec{u}=\langle-2,4\rangle$ $,$ $\vec{v}=\langle1,1\rangle$ $a)$ The projection of $\vec{u}$ onto $\vec{v}$ is given by proj$_{\vec{v}}$ $\vec{u}=\Big(\dfrac{\vec{u}\cdot\vec{v}}{|\vec{v}|^{2}}\Big)\vec{v}$. Find $\vec{u}\cdot\vec{v}$ by multiplying corresponding components and adding: $\vec{u}\cdot\vec{v}=(-2)(1)+(4)(1)=-2+4=2$ Find $|\vec{v}|^{2}$: $|\vec{v}|^{2}=(\sqrt{1^{2}+1^{2}})^{2}=1^{2}+1^{2}=1+1=2$ Substitute the known values into the formula and evaluate: proj$_{\vec{v}}$ $\vec{u}=\Big(\dfrac{2}{2}\Big)\langle1,1\rangle=(1)\langle1,1\rangle=\langle1,1\rangle$ $b)$ Since $\vec{u}_{1}=$proj$_{v}$ $\vec{u}$, then $\vec{u}_{1}=\langle1,1\rangle$ Since $\vec{u}_{2}=\vec{u}-$proj$_{\vec{v}}$ $\vec{u}$, substitute the known values into the formula and evaluate to obtain $\vec{u}_{2}$: $\vec{u}_{2}=\langle-2,4\rangle-\langle1,1\rangle=\langle-2-1,4-1\rangle=\langle-3,3\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.