Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 43

Answer

See explanations.

Work Step by Step

Step 1. We assume $\vec u=\langle u_x, u_y \rangle$ and $\vec v=\langle v_x, v_y \rangle$ Step 2. Use the projection formula, $proj_v\vec u=(\frac{\vec u\cdot\vec v}{|\vec v|^2})\vec v=(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2} )\langle v_x, v_y \rangle$ Step 3. Calculate vector difference $\vec u-proj_v\vec u=\langle u_x-(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2})v_x, u_y-(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2})v_y \rangle$ Step 4. Calculate the dot product of the above two vectors: $(proj_v\vec u)\cdot(\vec u-proj_v\vec u) =(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2})(u_xv_x-(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2})v_x^2+u_yv_y-(\frac{u_xv_x+u_yv_y}{v_x^2+v_y^2})v_y^2)=0$ (note that the denominator $v_x^2+v_y^2$ will be cancelled after combining the second and fourth terms) Step 5. We proved that the two vectors are orthogonal as their dot product is zero.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.