Answer
See proof below
Work Step by Step
The question asks to prove the given property
Given $(u - v) * (u+v) = |u|^2 - |v|^2$ (* means the dot product)
$= u * (u-v) + v * (u-v)$
$= u^2 - u * v + v*u - v^2$
$= u^2 - 2 u * v - v^2$
$=|u|^2 - |v|^2$