Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 5

Answer

$a)$ $\vec{u}\cdot\vec{v}=2$ $b)$ $\theta=45^{\circ}$

Work Step by Step

$\vec{u}=\langle2,0\rangle$ $,$ $\vec{v}=\langle1,1\rangle$ $a)$ To find $\vec{u}\cdot\vec{v}$, multiply corresponding components and add: $\vec{u}\cdot\vec{v}=(2)(1)+(0)(1)=2+0=2$ $b)$ The angle between two vectors is given by the following formula: $$\theta=\cos^{-1}\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$$ Therefore, obtain the magnitude of both $\vec{u}$ and $\vec{v}$: $|\vec{u}|=\sqrt{2^{2}+0^{2}}=\sqrt{4}=2$ $|\vec{v}|=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$ Substitute the known values into the formula and evaluate: $\theta=\cos^{-1}\dfrac{2}{2\sqrt{2}}=\cos^{-1}\dfrac{1}{\sqrt{2}}=\cos^{-1}\dfrac{\sqrt{2}}{2}=45^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.