Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 8

Answer

$a)$ $\vec{u}\cdot\vec{v}=-12$ $b)$ $\theta=180^{\circ}$

Work Step by Step

$\vec{u}=\langle-6,6\rangle$ $,$ $\vec{v}=\langle1,-1\rangle$ $a)$ To find $\vec{u}\cdot\vec{v}$, multiply corresponding components and add: $\vec{u}\cdot\vec{v}=(-6)(1)+(6)(-1)=-6-6=-12$ $b)$ The angle between two vectors is given by the following formula, $$\theta=\cos^{-1}\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$$ where $\vec{u}\cdot\vec{v}$ is the dot product of $\vec{u}$ and $\vec{v}$, and $|\vec{u}|$ and $|\vec{v}|$ are the magnitudes of $\vec{u}$ and $\vec{v}$, respectively. Find the magnitude of both $\vec{u}$ and $\vec{v}$: $|\vec{u}|=\sqrt{(-6)^{2}+(6)^{2}}=\sqrt{36+36}=\sqrt{72}=6\sqrt{2}$ $|\vec{v}|=\sqrt{(1)^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}$ Substitute the known values into the formula and evaluate: $\theta=\cos^{-1}\dfrac{-12}{(6\sqrt{2})(\sqrt{2})}=\cos^{-1}\dfrac{-12}{6(2)}=\cos^{-1}\dfrac{-12}{12}=...$ $...=\cos^{-1}(-1)=180^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.