Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 34

Answer

$a)$ proj$_{\vec{v}}$ $\vec{u}=\Big\langle\dfrac{2}{5},-\dfrac{1}{5}\Big\rangle$ $b)$ $\vec{u}_{1}=\Big\langle\dfrac{2}{5},-\dfrac{1}{5}\Big\rangle$ $;$ $\vec{u}_{2}=\Big\langle\dfrac{3}{5},\dfrac{6}{5}\Big\rangle$

Work Step by Step

$\vec{u}=\langle1,1\rangle$ $,$ $\vec{v}=\langle2,-1\rangle$ $a)$ The projection of $\vec{u}$ onto $\vec{v}$ is given by proj$_{\vec{v}}$ $\vec{u}=\Big(\dfrac{\vec{u}\cdot\vec{v}}{|\vec{v}|^{2}}\Big)\vec{v}$ Find $\vec{u}\cdot\vec{v}$ by multiplying corresponding components and adding: $\vec{u}\cdot\vec{v}=(1)(2)+(1)(-1)=2-1=1$ Find $|\vec{v}|^{2}$: $|\vec{v}|^{2}=\Big(\sqrt{2^{2}+(-1)^{2}}\Big)^{2}=2^{2}+(-1)^{2}=4+1=5$ Substitute the known values into the formula and evaluate: proj$_{\vec{v}}$ $\vec{u}=\Big(\dfrac{1}{5}\Big)\langle2,-1\rangle=\Big\langle\dfrac{2}{5},-\dfrac{1}{5}\Big\rangle$ $b)$ Since $\vec{u}_{1}=$proj$_{\vec{v}}$ $\vec{u}$, then $\vec{u}_{1}=\Big\langle\dfrac{2}{5},-\dfrac{1}{5}\Big\rangle$ Since $\vec{u}_{2}=\vec{u}-$proj$_{\vec{v}}$ $\vec{u}$, substitute the known values into the formula and evaluate to obtain $\vec{u}_{2}$: $\vec{u}_{2}=\langle1,1\rangle-\Big\langle\dfrac{2}{5},-\dfrac{1}{5}\Big\rangle=\Big\langle1-\dfrac{2}{5},1+\dfrac{1}{5}\Big\rangle=\Big\langle\dfrac{3}{5},\dfrac{6}{5}\Big\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.