Answer
$u \cdot v=v \cdot u$
Work Step by Step
Let $u=\lt p_1,p_2 \gt ; v=\lt q_1,q_2 \gt$
Consider LHS
$u \cdot v=(p_1)(q_1)+(p_2) (q_2)=p_1 q_1+p_2 q_2$
Next, consider RHS
$v \cdot u=(q_1)(p_1)+(q_2)(p_2)=q_1p_1+q_2p_2=p_1 q_1+p_2 q_2$
Hence, $u \cdot v=v \cdot u$