Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 26

Answer

comp$_{\vec{v}}$ $\vec{u}=\sqrt{2}$

Work Step by Step

$\vec{u}=\langle-3,5\rangle$ $,$ $\vec{v}=\langle\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\rangle$ The component of $\vec{u}$ along $\vec{v}$ is comp$_{\vec{v}}$ $\vec{u}=\dfrac{\vec{u}\cdot\vec{v}}{|\vec{v}|}$ where $\vec{u}\cdot\vec{v}$ is the dot product of the vectors $\vec{u}$ and $\vec{v}$ and $|\vec{v}|$ is the magnitude of the vector $\vec{v}$. Find $\vec{u}\cdot\vec{v}$ by multiplying corresponding components and adding: $\vec{u}\cdot\vec{v}=(-3)\Big(\dfrac{1}{\sqrt{2}}\Big)+(5)\Big(\dfrac{1}{\sqrt{2}}\Big)=-\dfrac{3}{\sqrt{2}}+\dfrac{5}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}$ Find $|\vec{v}|$: $|\vec{v}|=\sqrt{\Big(\dfrac{1}{\sqrt{2}}\Big)^{2}+\Big(\dfrac{1}{\sqrt{2}}\Big)^{2}}=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=\sqrt{\dfrac{2}{2}}=\sqrt{1}=1$ Substitute $\vec{u}\cdot\vec{v}$ and $|\vec{v}|$ into the formula and evaluate: comp$_{\vec{v}}$ $\vec{u}=\dfrac{\sqrt{2}}{1}=\sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.