Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 9 - Section 9.2 - The Dot Product - 9.2 Exercises - Page 646: 10

Answer

$a)$ $\vec{u}\cdot\vec{v}=4$ $b)$ $\theta\approx60^{\circ}$

Work Step by Step

$\vec{u}=2\vec{i}+\vec{j}$ $,$ $\vec{v}=3\vec{i}-2\vec{j}$ $a)$ To find $\vec{u}\cdot\vec{v}$, multiply corresponding components and add: $\vec{u}\cdot\vec{v}=(2)(3)+(1)(-2)=6-2=4$ $b)$ The angle between two vectors is given by the following formula. $$\theta=\cos^{-1}\dfrac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$$ where $\vec{u}\cdot\vec{v}$ is the dot product of $\vec{u}$ and $\vec{v}$, and $|\vec{u}|$ and $|\vec{v}|$ are the magnitudes of $\vec{u}$ and $\vec{v}$, respectively. Find the magnitude of both $\vec{u}$ and $\vec{v}$: $|\vec{u}|=\sqrt{2^{2}+1^{2}}=\sqrt{4+1}=\sqrt{5}$ $|\vec{v}|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{9+4}=\sqrt{13}$ Substitute the known values into the formula and evaluate: $\theta=\cos^{-1}\dfrac{4}{(\sqrt{5})(\sqrt{13})}=\cos^{-1}\dfrac{4}{\sqrt{65}}\approx60^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.