Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Review - Exercises - Page 529: 65

Answer

$\sin ^{}\left( \tan^{-1} x\right) =\dfrac {x}{\sqrt {1+x^{2}}}$

Work Step by Step

Lets assume $\alpha =\tan ^{-1}x\Rightarrow \tan \alpha =x$ $\sin \left( \tan ^{-1}x\right) =\sin \alpha $ $\tan \alpha =\dfrac {\sin \alpha }{\cos \alpha }=\dfrac {\sin \alpha }{\sqrt {1-\sin ^{2}\alpha }}=x$ $\Rightarrow \dfrac {\sin ^{2}\alpha }{1-\sin ^{2}\alpha }=x^{2}\Rightarrow \sin ^{2}\alpha =x^{2}-x^{2}\sin ^{2}\alpha \Rightarrow \sin ^{2}\alpha \left( 1+x^{2}\right) =x^{2}\Rightarrow \sin \alpha =\dfrac {x}{\sqrt {1+x^{2}}}$ $\Rightarrow \sin \alpha =\sin ^{}\left( \tan^{-1} x\right) =\dfrac {x}{\sqrt {1+x^{2}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.