Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 47

Answer

$$\frac{{{y^2}}}{{49}} - \frac{{{x^2}}}{{392}} = 1$$

Work Step by Step

$$\eqalign{ & {\bf{e}} = 3;{\text{ center at }}\left( {0,0} \right);{\text{ vertex at }}\left( {0,7} \right) \cr & {\text{The }}x{\text{ - coordinate in the vertex and center are the same, then }} \cr & {\text{the hyperbola has the equation }}\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr & {\text{vertices at }}\left( {0, \pm a} \right){\text{,}}\,{\text{ vertex at }}\left( {0,7} \right) \cr & a = 7 \cr & \cr & {\text{excentricity }}{\bf{e}} = \frac{c}{a} \cr & 3 = \frac{c}{7} \cr & c = 21 \cr & {b^2} = {21^2} - {7^2} \cr & {b^2} = 392 \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{y^2}}}{{49}} - \frac{{{x^2}}}{{392}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.