Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 44

Answer

$$\frac{{{{\left( {x - 3} \right)}^2}}}{4} - \frac{{{{\left( {y + 2} \right)}^2}}}{9} = 1$$

Work Step by Step

$$\eqalign{ & {\text{vertices at }}\left( {5, - 2} \right),\left( {1, - 2} \right);{\text{ asymptotes }}y = \pm \frac{3}{2}\left( {x - 3} \right) - 2 \cr & {\text{The }}y{\text{ - coordinate in the vertices are the same, then the hyperbola}} \cr & {\text{has the equation }}\frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With vertices at }}\left( {h \pm a,k} \right){\text{ and asymptotes }}y = \pm \frac{b}{a}\left( {x - h} \right) + k \cr & {\text{,then}} \cr & {\text{vertices }}\left( {5, - 2} \right),\left( {1, - 2} \right) \to \,\,\,k = - 2 \cr & {\text{asymptotes }}y = \pm \frac{3}{2}\left( {x - 3} \right) - 2 \to h = 3 \cr & h + a = 5 \cr & 3 + a = 5 \cr & a = 2 \cr & \cr & \frac{b}{a} = \frac{3}{2} \cr & \frac{b}{2} = \frac{3}{2} \cr & b = 3 \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{{\left( {x - 3} \right)}^2}}}{{{2^2}}} - \frac{{{{\left( {y + 2} \right)}^2}}}{{{3^2}}} = 1 \cr & \frac{{{{\left( {x - 3} \right)}^2}}}{4} - \frac{{{{\left( {y + 2} \right)}^2}}}{9} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.