Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 34

Answer

$$\eqalign{ & {\bf{e}} = \sqrt 5 \cr & {\bf{e}} \approx 2.2 \cr} $$

Work Step by Step

$$\eqalign{ & 8{y^2} - 2{x^2} = 16 \cr & {\text{Divide both sides by 16}} \cr & \frac{{8{y^2}}}{{16}} - \frac{{2{x^2}}}{{16}} = 1 \cr & \frac{{{y^2}}}{2} - \frac{{{x^2}}}{8} = 1 \cr & {\text{The equation is written in the form }}\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr & \frac{{{y^2}}}{2} - \frac{{{x^2}}}{8} = 1,{\text{ then }}{a^2} = 2{\text{ and }}{b^2} = 8 \cr & {\text{The excentricity of a hyperbola is giving by}} \cr & {\bf{e}} = \frac{{\sqrt {{a^2} + {b^2}} }}{a} \cr & {\bf{e}} = \frac{{\sqrt {2 + 8} }}{{\sqrt 2 }} \cr & {\bf{e}} = \sqrt 5 \cr & {\bf{e}} \approx 2.2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.