Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 35

Answer

$$\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1$$

Work Step by Step

$$\eqalign{ & x{\text{ - intercepts }}\left( { \pm 3,0} \right);{\text{ foci }}\left( { - 5,0} \right),\left( {5,0} \right) \cr & {\text{The }}y{\text{ coordinate in the foci are the same, then the hyperbola}} \cr & {\text{has the equation }}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{With }}x{\text{ - intercepts at }}\left( { \pm a,0} \right){\text{ and foci }}\left( { \pm c,0} \right) \cr & {\text{,Then}} \cr & {\text{foci }}\left( { - 5,0} \right),\left( {5,0} \right) \to \,\,\,c = 5 \cr & x{\text{ - intercepts at }}\left( { \pm 3,0} \right) \to \,\,a = 3 \cr & {b^2} = {c^2} - {a^2} \cr & {b^2} = 25 - 9 \cr & {b^2} = 16 \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.