Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 45

Answer

$$\frac{{{{\left( {x - 1} \right)}^2}}}{4} - \frac{{{{\left( {y + 2} \right)}^2}}}{5} = 1$$

Work Step by Step

$$\eqalign{ & {\text{center at }}\left( {1, - 2} \right);{\text{ focus at }}\left( { - 2, - 2} \right);{\text{ vertex at }}\left( { - 1, - 2} \right) \cr & {\text{The }}y{\text{ - coordinate in the vertex and focus are the same, then }} \cr & {\text{the hyperbola has the equation }}\frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With center at }}\left( {h,k} \right) \cr & {\text{center at }}\left( {1, - 2} \right) \to h = 1,\,\,k = - 2 \cr & {\text{vertices at }}\left( {h \pm a,k} \right){\text{ }} \cr & h - a = - 1 \cr & 1 - a = - 1 \cr & a = 2 \cr & \cr & {\text{foci at }}\left( {h \pm c,k} \right),{\text{focus at }}\left( { - 2, - 2} \right) \cr & h - c = - 2 \cr & 1 - c = - 2 \cr & c = 3 \cr & {b^2} = {c^2} - {a^2} \cr & {b^2} = 9 - 4 = 5 \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{{\left( {x - 1} \right)}^2}}}{4} - \frac{{{{\left( {y + 2} \right)}^2}}}{5} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.