Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 38

Answer

$$\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{2500}} = 1$$

Work Step by Step

$$\eqalign{ & {\text{vertices at }}\left( { - 10,0} \right),\left( {10,0} \right);{\text{ asymptotes }}y = \pm 5x \cr & {\text{The }}y{\text{ - coordinate in the vertices are the same, then the hyperbola}} \cr & {\text{has the equation }}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & {\text{With vertices at }}\left( { \pm a,0} \right){\text{ and asymptotes }}y = \pm \frac{b}{a}x \cr & {\text{,Then}} \cr & {\text{vertices }}\left( { - 10,0} \right),\left( {10,0} \right) \to \,\,\,a = 10 \cr & y = \pm \frac{b}{a}x = \pm 5x \cr & \frac{b}{a} = 5 \cr & \frac{b}{{10}} = 5 \cr & b = 50 \cr & {b^2} = 2500 \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{2500}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.