Answer
$$\eqalign{
& {\text{Domain: }}\left( { - \infty , - 2} \right] \cr
& {\text{Range: }}\left( { - \infty ,\infty } \right) \cr} $$
Work Step by Step
$$\eqalign{
& 3y = \sqrt {4{x^2} - 16} \cr
& {\text{Square each side}} \cr
& {\left( {3y} \right)^2} = {\left( {\sqrt {4{x^2} - 16} } \right)^2} \cr
& 9{y^2} = 4{x^2} - 16 \cr
& {\text{Write in standard form}}. \cr
& 4{x^2} - 9{y^2} = 16 \cr
& \frac{{{x^2}}}{4} - \frac{{{y^2}}}{{16/9}} = 1 \cr
& \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr
& a = 2,\,\,\,\,b = 4/3 \cr
& {\text{This is the equation of a hyperbola ellipse with }}x{\text{ - intercepts at}} \cr
& \left( { - a,0} \right){\text{ and }}\left( {a,0} \right) \cr
& {\text{The domain is }}\left( { - \infty , - a} \right] \cup \left[ {a,\infty } \right) \cr
& {\text{The range is }}\left( { - \infty ,\infty } \right) \cr
& {\text{In the original equation}},{\text{ the radical expression }} - \sqrt {1 + 4{y^2}} {\text{ represents}} \cr
& {\text{a negative number}},{\text{ so the only possible values of }}x{\text{ are negative}} \cr
& ,{\text{then the domain is }}\left( { - \infty , - a} \right]. \cr
& \cr
& {\text{Domain: }}\left( { - \infty , - 2} \right] \cr
& {\text{Range: }}\left( { - \infty ,\infty } \right) \cr
& \cr
& {\text{Graph}} \cr} $$