Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 41

Answer

$$\frac{{2{y^2}}}{{25}} - 2{x^2} = 1$$

Work Step by Step

$$\eqalign{ & {\text{foci at }}\left( {0,\sqrt {13} } \right),\left( {0, - \sqrt {13} } \right);{\text{ asymptotes }}y = \pm 5x \cr & {\text{The }}x{\text{ - coordinate in the foci are the same, then the hyperbola}} \cr & {\text{has the equation }}\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr & {\text{With foci at }}\left( {0, \pm c} \right){\text{ and asymptotes }}y = \pm \frac{a}{b}x \cr & \frac{a}{b} = 5 \cr & a = 5b \cr & \cr & {\text{foci at }}\left( {0, \pm \sqrt {13} } \right) \to c = \sqrt {13} {\text{ }} \cr & {c^2} = {a^2} + {b^2} \cr & 13 = {a^2} + {b^2} \cr & {\text{Substituting }}5b{\text{ for }}a \cr & 13 = {\left( {5b} \right)^2} + {b^2} \cr & 13 = 25{b^2} + {b^2} \cr & 26{b^2} = 13 \cr & {b^2} = \frac{1}{2} \cr & \cr & {a^2} = 25{b^2} \cr & {a^2} = \frac{{25}}{2} \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr & \frac{{{y^2}}}{{25/2}} - \frac{{{x^2}}}{{1/2}} = 1 \cr & \frac{{2{y^2}}}{{25}} - 2{x^2} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.