Answer
$$\eqalign{
& {\text{Domain: }}\left( { - \infty , - \frac{1}{5}} \right] \cr
& {\text{Range: }}\left( { - \infty ,\infty } \right) \cr} $$
Work Step by Step
$$\eqalign{
& 5x = - \sqrt {1 + 4{y^2}} \cr
& {\text{Square each side}} \cr
& {\left( {5x} \right)^2} = {\left( { - \sqrt {1 + 4{y^2}} } \right)^2} \cr
& 25{x^2} = 1 + 4{y^2} \cr
& {\text{Write in standard form}} \cr
& 25{x^2} - 4{y^2} = 1 \cr
& \frac{{{x^2}}}{{1/25}} - \frac{{{y^2}}}{{1/4}} = 1 \cr
& \frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr
& a = 1/5,\,\,\,\,b = 1/2 \cr
& {\text{This is the equation of a hyperbola ellipse with }}x{\text{ - intercepts at}} \cr
& \left( { - a,0} \right){\text{ and }}\left( {a,0} \right) \cr
& {\text{The domain is }}\left( { - \infty , - a} \right] \cup \left[ {a,\infty } \right) \cr
& {\text{The range is }}\left( { - \infty ,\infty } \right) \cr
& {\text{In the original equation}},{\text{ the radical expression }} - \sqrt {1 + 4{y^2}} {\text{ represents}} \cr
& {\text{a negative number}},{\text{ so the only possible values of }}x{\text{ are negative}} \cr
& ,{\text{then the domain is }}\left( { - \infty , - a} \right]. \cr
& \cr
& {\text{Domain: }}\left( { - \infty , - \frac{1}{5}} \right] \cr
& {\text{Range: }}\left( { - \infty ,\infty } \right) \cr
& \cr
& {\text{Graph}} \cr} $$