Answer
$$\eqalign{
& {\text{Center }}\left( {0,0} \right) \cr
& {\text{Vertices}}:\left( {0, \pm 5} \right) \cr
& {\text{Foci: }}\left( {0, \pm \frac{{\sqrt {34} }}{{15}}} \right) \cr
& {\text{Asymptotes: }}y = \pm \frac{3}{5}x \cr
& {\text{domain: }}\left( { - \infty , + \infty } \right) \cr
& {\text{range: }}\left( { - \infty , - \frac{1}{5}} \right] \cup \left[ {\frac{1}{5},\infty } \right) \cr} $$
Work Step by Step
$$\eqalign{
& 25{y^2} - 9{x^2} = 1 \cr
& \frac{{{y^2}}}{{\left( {1/25} \right)}} - \frac{{{x^2}}}{{\left( {1/9} \right)}} = 1 \cr
& {\text{The equation is written in the form }}\frac{{{y^2}}}{{{a^2}}} - \frac{{{x^2}}}{{{b^2}}} = 1 \cr
& \frac{{{y^2}}}{{\left( {1/25} \right)}} - \frac{{{x^2}}}{{\left( {1/9} \right)}} = 1,{\text{ then }}a = 1/5,\,\,b = 1/3 \cr
& c = \sqrt {{a^2} + {b^2}} = \sqrt {1/25 + 1/9} = \frac{{\sqrt {34} }}{{15}} \cr
& \cr
& {\text{Therefore,}} \cr
& {\text{Center }}\left( {0,0} \right) \cr
& {\text{Vertices: }}\left( {0, \pm a} \right):\left( {0, \pm \frac{1}{5}} \right) \cr
& {\text{Foci: }}\left( {0, \pm c} \right):\left( {0, \pm \frac{{\sqrt {34} }}{{15}}} \right) \cr
& {\text{Asymptotes: }}y = \pm \frac{a}{b}x \cr
& {\text{Asymptotes: }}y = \pm \frac{3}{5}x \cr
& {\text{The domain of the hyperbola is }}\left( { - \infty , + \infty } \right) \cr
& {\text{The range of the hyperbola is: }}\left( { - \infty ,a} \right] \cup \left[ {a,\infty } \right) \cr
& {\text{range: }}\left( { - \infty , - \frac{1}{5}} \right] \cup \left[ {\frac{1}{5},\infty } \right) \cr
& \cr
& {\text{Graph}} \cr} $$