Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - 10.3 Hyperbolas - 10.3 Exercises - Page 988: 43

Answer

$$\frac{{{{\left( {y - 3} \right)}^2}}}{4} - \frac{{49{{\left( {x - 4} \right)}^2}}}{4} = 1$$

Work Step by Step

$$\eqalign{ & {\text{ertices at }}\left( {4,5} \right),\left( {4,1} \right);{\text{ asymptotes }}y = \pm 7\left( {x - 4} \right) + 3 \cr & {\text{The }}x{\text{ - coordinate in the vertices are the same, then the hyperbola}} \cr & {\text{has the equation }}\frac{{{{\left( {y - k} \right)}^2}}}{{{a^2}}} - \frac{{{{\left( {x - h} \right)}^2}}}{{{b^2}}} = 1 \cr & {\text{With vertices at }}\left( {h,k \pm a} \right){\text{ and asymptotes }}y = \pm \frac{a}{b}\left( {x - h} \right) + k \cr & {\text{,then}} \cr & {\text{vertices }}\left( {4,5} \right),\left( {4,1} \right) \to \,\,\,h = 4 \cr & {\text{asymptotes }}y = \pm 7\left( {x - 4} \right) + 3 \to k = 3 \cr & k + a = 5 \cr & 3 + a = 5 \cr & a = 2 \cr & \cr & \frac{a}{b} = 7 \cr & b = \frac{2}{7} \cr & \cr & {\text{The equation of the hyperbola is}} \cr & \frac{{{{\left( {y - 3} \right)}^2}}}{{{2^2}}} - \frac{{{{\left( {x - 4} \right)}^2}}}{{{{\left( {2/7} \right)}^2}}} = 1 \cr & \frac{{{{\left( {y - 3} \right)}^2}}}{4} - \frac{{49{{\left( {x - 4} \right)}^2}}}{4} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.