Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 37

Answer

$y=\frac{1}{2}(cosh(t)-cos(t))+\frac{1}{2}(sinh(t)-sin(t))$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $y^{(4)}-1=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-1=0\\\\$ $r^4-1=0 \rightarrow\;\;\;\;\; r_{1}= 1\;\;\;,\;\;\;r_{2}=-1\;\;\;or\;\;\;\;r_{3}=i \;\;\;\;\;r_{4}=-i\\\\$ So the 4 roots is: $r_{1},r_{2}=\pm 1 \;\;\;\;or\;\;\;r_{3},r_{4}=\pm i$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= Ce^{\pm t}+C_{3}cos(t)+C_{4}sin(t)$ Euler transformations: $e^{\pm t} ={C_{1}}'cosh(t)+{C_{2}}'sinh(t)$ So; $\boxed{y= C_{1}cosh(t)+C_{2}sinh(t)+C_{3}cos(t)+C_{4}sin(t)}$ Derivatives of the general solution; ${y}'=C_{1}sinh(t)+ C_{2}cosh(t)-C_{3}sin(t)+C_{4}cos(t)$ ${y}''=C_{1}cosh(t)+C_{2}sinh(t)-C_{3}cos(t)-C_{4}sin(t)$ ${y}'''=C_{1}sinh(t)+ C_{2}cosh(t)+C_{3}sin(t)-C_{4}cos(t)$ At; $y(0)=C_{1}+C_{3}=0 $ ${y}'(0)=C_{2}+ C_{4}=0 $ ${y}''(0)=C_{1}- C_{3}=1 $ ${y}'''(0)=C_{2}- C_{4}=1 $ $\;\;\;\;\;\Rightarrow \;\;\;\;C_{1}=\frac{1}{2}\;\;\;\;\;\;\;C_{2}=\frac{1}{2}\;\;\;\;\;\;C_{3}=\frac{-1}{2} \;\;\;\;\;\; C_{4}=\frac{-1}{2}$ $\therefore y=\frac{1}{2}(cosh(t)-cos(t))+\frac{1}{2}(sinh(t)-sin(t))$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.