Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises 2.6 - Page 97: 11



Work Step by Step

Since \begin{align*} \lim _{t \rightarrow-\infty} \frac{2-t+\sin t}{t+\cos t}&=\lim _{t \rightarrow-\infty} \frac{\frac{2}{t}-1+\frac{\sin t}{t}}{1+\frac{\cos t}{t}}\\ &=\frac{\lim _{t \rightarrow-\infty}\frac{2}{t}-\lim _{t \rightarrow-\infty}(1)+\lim _{t \rightarrow-\infty}\frac{\sin t}{t}}{\lim _{t \rightarrow-\infty}(1)+\lim _{t \rightarrow-\infty}\frac{\cos t}{t}}\\ &=\frac{0-1+0}{1+0}\\ &=-1 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.