Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 8 - Further Techniques and Applications of Integration - 8.4 Improper Integrals - 8.4 Exercises - Page 452: 3

Answer

diverges

Work Step by Step

$$\eqalign{ & \int_4^\infty {\frac{2}{{\sqrt x }}} dx \cr & {\text{write the radical as }}{x^{1/2}} \cr & = \int_4^\infty {\frac{2}{{{x^{1/2}}}}} dx \cr & = \int_4^\infty {2{x^{ - 1/2}}} dx \cr & {\text{solve the improper integral using the definition }}\int_a^\infty {f\left( x \right)} dx = \mathop {\lim }\limits_{b \to \infty } \int_a^b {f\left( x \right)} dx{\text{ }} \cr & {\text{then}} \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = \mathop {\lim }\limits_{b \to \infty } \int_4^b {2{x^{ - 1/2}}} dx{\text{ }} \cr & {\text{integrate by using the power property }}\int {{x^n}} dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = 2\mathop {\lim }\limits_{b \to \infty } \left( {\frac{{{x^{1/2}}}}{{1/2}}} \right)_4^b \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = 4\mathop {\lim }\limits_{b \to \infty } \left( {\sqrt x } \right)_4^b \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 388}}} \right) \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = 4\mathop {\lim }\limits_{b \to \infty } \left( {\sqrt b - \sqrt 4 } \right) \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = 4\mathop {\lim }\limits_{b \to \infty } \left( {\sqrt b - 2} \right) \cr & {\text{evaluate the limit when }}b \to \infty \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = 4\left( {\sqrt \infty - 2} \right) \cr & {\text{Simplify}} \cr & \int_4^\infty {2{x^{ - 1/2}}} dx = \infty \cr & {\text{Then}} \cr & {\text{The integral diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.