Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 8 - Further Techniques and Applications of Integration - 8.4 Improper Integrals - 8.4 Exercises - Page 452: 15

Answer

$$1000$$

Work Step by Step

$$\eqalign{ & \int_{ - \infty }^0 {1000{e^x}} dx \cr & {\text{by the definition of an improper integral}}{\text{}} \cr & \int_{ - \infty }^0 {1000{e^x}} dx = \mathop {\lim }\limits_{a \to - \infty } \int_a^0 {1000{e^x}} dx \cr & = 1000\mathop {\lim }\limits_{a \to - \infty } \int_a^0 {{e^x}} dx \cr & {\text{integrating}} \cr & = 1000\mathop {\lim }\limits_{a \to - \infty } \left[ {{e^x}} \right]_a^0 \cr & {\text{evaluate}} \cr & = 1000\mathop {\lim }\limits_{a \to - \infty } \left( {{e^0} - {e^a}} \right) \cr & = 1000\mathop {\lim }\limits_{a \to - \infty } \left( {1 - {e^a}} \right) \cr & {\text{evaluating the limit when }}a \to - \infty \cr & = 1000\left( {1 - {e^{ - \infty }}} \right) \cr & = 1000\left( {1 - 0} \right) \cr & = 1000 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.