Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 29

Answer

$${e^{16}} - 17$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {6{x^5}{e^{{x^3}y}}}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant 2,\,\,\,\,0 \leqslant y \leqslant 2} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^2 {\int_0^2 {6{x^5}{e^{{x^3}y}}} } dydx \cr & = \int_0^2 {\left[ {\int_0^2 {6{x^5}{e^{{x^3}y}}} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & = 6{x^5}\int_0^2 {{e^{{x^3}y}}} dy \cr & {\text{integrating}} \cr & = 6{x^5}\left( {\frac{{{e^{{x^3}y}}}}{{{x^3}}}} \right)_0^2 \cr & {\text{evaluating the limits for the variable }}y \cr & = 6{x^2}\left( {{e^{{x^3}y}}} \right)_0^2 \cr & = 6{x^2}\left( {{e^{{x^3}\left( 2 \right)}} - {e^{{x^3}\left( 0 \right)}}} \right) \cr & = 6{x^2}\left( {{e^{2{x^3}}} - 1} \right) \cr & = 6{x^2}{e^{2{x^3}}} - 6{x^2} \cr & \int_0^2 {\left[ {\int_0^2 {6{x^5}{e^{{x^3}y}}} dy} \right]} dx = \int_0^2 {\left( {6{x^2}{e^{2{x^3}}} - 6{x^2}} \right)} dx \cr & {\text{integrating}}{\text{, }} \cr & = \left( {{e^{2{x^3}}} - 2{x^3}} \right)_0^2 \cr & {\text{evaluate}} \cr & = \left( {{e^{2{{\left( 2 \right)}^3}}} - 2{{\left( 2 \right)}^3}} \right) - \left( {{e^{2{{\left( 0 \right)}^3}}} - 2{{\left( 0 \right)}^3}} \right) \cr & = {e^{16}} - 16 - 1 \cr & = {e^{16}} - 17 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.