Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 30

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {{y^3}\sin x{y^2}}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant 2,\,\,\,\,0 \leqslant y \leqslant \sqrt {\pi /2} } \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^{\sqrt {\pi /2} } {\int_0^2 {{y^3}\sin x{y^2}} } dxdy \cr & = \int_0^{\sqrt {\pi /2} } {\left[ {\int_0^2 {{y^3}\sin x{y^2}} dx} \right]} dy \cr & {\text{solve the inner integral}}{\text{, treat }}y{\text{ as a constant}} \cr & = y\int_0^2 {{y^2}\sin x{y^2}} dx \cr & {\text{integrating}} \cr & = - y\left( {\cos x{y^2}} \right)_0^2 \cr & {\text{evaluating the limits for the variable }}x \cr & = - y\left( {\cos \left( 2 \right){y^2} - \cos \left( 0 \right){y^2}} \right) \cr & = - y\cos 2{y^2} + y \cr & \cr & \int_0^{\sqrt {\pi /2} } {\left[ {\int_0^2 {{y^3}\sin x{y^2}} dx} \right]} dy = \int_0^{\sqrt {\pi /2} } {\left( {y - y\cos 2{y^2}} \right)} dy \cr & {\text{integrating}}{\text{, }} \cr & = \left( {\frac{{{y^2}}}{2} - \frac{1}{4}\sin 2{y^2}} \right)_0^{\sqrt {\pi /2} } \cr & {\text{evaluate}} \cr & = \left( {\frac{{{{\left( {\sqrt {\pi /2} } \right)}^2}}}{2} - \frac{1}{4}\sin 2{{\left( {\sqrt {\pi /2} } \right)}^2}} \right) - \left( {\frac{{{{\left( 0 \right)}^2}}}{2} - \frac{1}{4}\sin 2{{\left( 0 \right)}^2}} \right) \cr & = \frac{{\pi /2}}{2} - \frac{1}{4}\sin \left( \pi \right) - 0 \cr & = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.