Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 22

Answer

$$\frac{1}{4}$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {xy\sin {x^2}}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant \sqrt {\pi /2} ,\,\,\,\,0 \leqslant y \leqslant 1} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^1 {\int_0^{\sqrt {\pi /2} } {xy\sin {x^2}} } dxdy \cr & = \int_0^1 {\left[ {\int_0^{\sqrt {\pi /2} } {xy\sin {x^2}} dx} \right]} dy \cr & {\text{solve the inner integral}}{\text{, treat }}y{\text{ as a constant}} \cr & = \frac{y}{2}\int_0^{\sqrt {\pi /2} } {\sin {x^2}\left( {2x} \right)} dx \cr & {\text{integrating}} \cr & = \frac{y}{2}\left( { - \cos {x^2}} \right)_0^{\sqrt {\pi /2} } \cr & {\text{evaluating the limits for the variable }}x \cr & = - \frac{y}{2}\left( {\cos {{\left( {\sqrt {\pi /2} } \right)}^2} - \cos {{\left( 0 \right)}^2}} \right) \cr & {\text{simplifying}} \cr & = - \frac{y}{2}\left( {0 - 1} \right) \cr & = \frac{y}{2} \cr & \cr & = \int_0^1 {\left[ {\int_0^{\sqrt {\pi /2} } {xy\sin {x^2}} dx} \right]} dy = \int_0^1 {\frac{y}{2}} dy \cr & = \frac{1}{2}\int_0^1 y dy \cr & {\text{integrating}} \cr & = \frac{1}{2}\left( {\frac{{{y^2}}}{2}} \right)_0^1 \cr & {\text{evaluate}} \cr & = \frac{1}{4}\left( {{{\left( 1 \right)}^2} - {{\left( 0 \right)}^2}} \right) \cr & = \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.