Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 32

Answer

$$\bar f = 2$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( {x,y} \right) = 4 - x - y;{\text{ }}R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant 2,{\text{ 0}} \leqslant y \leqslant {\text{2}}} \right\} \cr & {\text{The average value of an integrable function }}f{\text{ over a region }}R \cr & {\text{is:}} \cr & \bar f = \frac{1}{{{\text{area of }}R}}\iint\limits_R {f\left( {x,y} \right)}dA \cr & {\text{The area of the region }}R{\text{ is:}} \cr & {\text{Area of }}R = \int_0^2 {\int_0^2 {dx} dy} \cr & {\text{Area of }}R = \left( 2 \right)\left( 2 \right) \cr & {\text{Area of }}R = 4 \cr & {\text{Therefore}}{\text{, }} \cr & \bar f = \frac{1}{4}\iint\limits_R {f\left( {x,y} \right)}dA \cr & \bar f = \frac{1}{4}\int_0^2 {\int_0^2 {\left( {4 - x - y} \right)dx} dy} \cr & {\text{Integrate}} \cr & \bar f = \frac{1}{4}\int_0^2 {\left[ {4x - \frac{1}{2}{x^2} - xy} \right]_0^2dy} \cr & \bar f = \frac{1}{4}\int_0^2 {\left[ {4\left( 2 \right) - \frac{1}{2}{{\left( 2 \right)}^2} - 2y} \right]dy} \cr & \bar f = \frac{1}{4}\int_0^2 {\left( {6 - 2y} \right)dy} \cr & \bar f = \frac{1}{4}\left[ {6y - {y^2}} \right]_0^2 \cr & \bar f = \frac{1}{4}\left[ {6\left( 2 \right) - {{\left( 2 \right)}^2}} \right] - \frac{1}{4}\left[ {6\left( 0 \right) - {{\left( 0 \right)}^2}} \right] \cr & \bar f = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.