Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 13

Answer

$$7$$

Work Step by Step

$$\eqalign{ & \int_0^{\ln 2} {\int_0^1 {6x{e^{3y}}} } dxdy \cr & = \int_0^{\ln 2} {\left[ {\int_0^1 {6x{e^{3y}}} dx} \right]} dy \cr & {\text{solve the inner integral}}{\text{, treat }}y{\text{ as a constant}} \cr & = \int_0^1 {6x{e^{3y}}} dx \cr & = 6{e^{3y}}\int_0^1 x dx \cr & = 6{e^{3y}}\left[ {\frac{{{x^2}}}{2}} \right]_0^1 \cr & = 3{e^{3y}}\left[ {{x^2}} \right]_0^1 \cr & {\text{evaluating the limits for }}x \cr & = 3{e^{3y}}\left[ {{1^2} - {0^2}} \right] \cr & = 3{e^{3y}} \cr & \cr & \int_0^{\ln 2} {\left[ {\int_0^1 {6x{e^{3y}}} dx} \right]} dy = \int_0^{\ln 2} {3{e^{3y}}} dy \cr & {\text{integrating}} \cr & = \left( {{e^{3y}}} \right)_0^{\ln 2} \cr & = {e^{3\ln 2}} - {e^0} \cr & {\text{simplifying}} \cr & = {e^{\ln 8}} - 1 \cr & = 8 - 1 \cr & = 7 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.