Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 34

Answer

$$\bar f = \frac{4}{{{\pi ^2}}}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( {x,y} \right) = \sin x\sin y;{\text{ }}R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant \pi ,{\text{ 0}} \leqslant y \leqslant \pi } \right\} \cr & {\text{The average value of an integrable function }}f{\text{ over a region }}R \cr & {\text{is:}} \cr & \bar f = \frac{1}{{{\text{area of }}R}}\iint\limits_R {f\left( {x,y} \right)}dA \cr & {\text{The area of the region }}R{\text{ is:}} \cr & {\text{Area of }}R = \int_0^\pi {\int_0^\pi {dx} dy} \cr & {\text{Area of }}R = {\pi ^2} \cr & \cr & {\text{Therefore}}{\text{, }} \cr & \bar f = \frac{1}{{{\pi ^2}}}\iint\limits_R {f\left( {x,y} \right)}dA \cr & \bar f = \frac{1}{{{\pi ^2}}}\int_0^\pi {\int_0^\pi {\sin x\sin y} dxdy} \cr & {\text{Integrate with respect to }}x \cr & \bar f = - \frac{1}{{{\pi ^2}}}\int_0^\pi {\left[ {\cos x\sin y} \right]_0^\pi dy} \cr & \bar f = - \frac{1}{{{\pi ^2}}}\int_0^\pi {\left[ {\cos \pi \sin y - \cos 0\sin y} \right]dy} \cr & \bar f = - \frac{1}{{{\pi ^2}}}\int_0^\pi {\left[ { - \sin y - \sin y} \right]dy} \cr & \bar f = \frac{2}{{{\pi ^2}}}\int_0^\pi {\sin ydy} \cr & {\text{Integrate and evaluate}} \cr & \bar f = \frac{2}{{{\pi ^2}}}\left[ { - \cos y} \right]_0^\pi \cr & \bar f = - \frac{2}{{{\pi ^2}}}\left[ {\cos \pi - \cos 0} \right] \cr & \bar f = - \frac{2}{{{\pi ^2}}}\left[ { - 2} \right] \cr & \bar f = \frac{4}{{{\pi ^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.