Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 16

Answer

$$\frac{9}{2}\ln \left( {\sqrt 2 + 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\int_0^3 {r\sec \theta } } drd\theta \cr & = \int_0^{\pi /4} {\left[ {\int_0^3 {r\sec \theta } dr} \right]} d\theta \cr & {\text{solve the inner integral}}{\text{, treat }}\theta {\text{ as a constant}} \cr & = \int_0^3 {r\sec \theta } dr \cr & = \sec \theta \int_0^3 r dr \cr & = \sec \theta \left[ {\frac{{{r^2}}}{2}} \right]_0^3 \cr & {\text{evaluating the limits for }}r \cr & = \sec \theta \left[ {\frac{{{3^2}}}{2} - \frac{{{0^2}}}{2}} \right] \cr & = \sec \theta \left( {\frac{9}{2}} \right) \cr & = \frac{9}{2}\sec \theta \cr & \cr & = \int_0^{\pi /4} {\left[ {\int_0^3 {r\sec \theta } dr} \right]} d\theta = \int_0^{\pi /4} {\frac{9}{2}\sec \theta } d\theta \cr & = \frac{9}{2}\int_0^{\pi /4} {\sec \theta } d\theta \cr & {\text{integrating}} \cr & = \frac{9}{2}\left( {\ln \left| {\sec \theta + \tan \theta } \right|} \right)_0^{\pi /4} \cr & = \frac{9}{2}\left( {\ln \left| {\sec \frac{\pi }{4} + \tan \frac{\pi }{4}} \right| - \ln \left| {\sec 0 + \tan 0} \right|} \right) \cr & {\text{simplifying}} \cr & = \frac{9}{2}\left( {\ln \left( {\sqrt 2 + 1} \right) - \ln \left| {1 + 0} \right|} \right) \cr & = \frac{9}{2}\ln \left( {\sqrt 2 + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.