Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 28

Answer

$$\ln 2$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {x{{\sec }^2}xy}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant \pi /3,\,\,\,\,0 \leqslant y \leqslant 1} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^{\pi /3} {\int_0^1 {x{{\sec }^2}xy} } dydx \cr & = \int_0^{\pi /3} {\left[ {\int_0^1 {x{{\sec }^2}xy} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & = \int_0^1 {x{{\sec }^2}xy} dy \cr & {\text{integrating}} \cr & = \left( {\tan xy} \right)_0^1 \cr & {\text{evaluating the limits for the variable }}y \cr & = \tan x\left( 1 \right) - \tan 0 \cr & = \tan x \cr & \int_0^{\pi /3} {\left[ {\int_0^1 {x{{\sec }^2}xy} dy} \right]} dx = \int_0^{\pi /3} {\tan x} dx \cr & {\text{integrating}}{\text{, use }}\int {\tan u} du = - \ln \left| {\cos u} \right| + C \cr & = \left( { - \ln \left| {\cos u} \right|} \right)_0^{\pi /3} \cr & {\text{evaluate}} \cr & = - \ln \left| {\cos \frac{\pi }{3}} \right| + \ln \left| {\cos 0} \right| \cr & = - \ln \left( {\frac{1}{2}} \right) + \ln \left( 1 \right) \cr & = \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.