Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 26

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {y\cos xy}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant 1,\,\,\,\,0 \leqslant y \leqslant \pi /3} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^{\pi /3} {\int_0^1 {y\cos xy} } dxdy \cr & = \int_0^{\pi /3} {\left[ {\int_0^1 {y\cos xy} dx} \right]} dy \cr & {\text{solve the inner integral}}{\text{, treat }}y{\text{ as a constant}} \cr & = \int_0^1 {y\cos xy} dx \cr & {\text{integrating}} \cr & = \left( {\sin xy} \right)_0^1 \cr & {\text{evaluating the limits for the variable }}x \cr & = \sin \left( 1 \right)y - \sin \left( 0 \right)y \cr & = \sin y \cr & \int_0^{\pi /3} {\left[ {\int_0^1 {y\cos xy} dx} \right]} dy = \int_0^{\pi /3} {\sin y} dy \cr & {\text{integrating}} \cr & = \left( { - \cos y} \right)_0^{\pi /3} \cr & {\text{evaluate}} \cr & = - \cos \left( {\frac{\pi }{3}} \right) + \cos \left( 0 \right) \cr & = - \frac{1}{2} + 1 \cr & = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.