Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 19

Answer

$$15$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {4{x^3}\cos y}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):1 \leqslant x \leqslant 2,\,\,\,\,0 \leqslant y \leqslant \pi /2} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & \int_1^2 {\int_0^{\pi /2} {4{x^3}\cos y} dy} dx \cr & = \int_1^2 {\left[ {\int_0^{\pi /2} {4{x^3}\cos y} dy} \right]} dx \cr & = \int_1^2 {4{x^3}\left[ {\int_0^{\pi /2} {\cos y} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & \int_0^{\pi /2} {\cos y} dy \cr & = \left[ {\sin y} \right]_0^{\pi /2} \cr & {\text{evaluating the limits for the variable }}y \cr & = \sin \left( {\frac{\pi }{2}} \right) - \sin \left( 0 \right) \cr & = 1 \cr & {\text{simplifying}} \cr & \int_1^2 {4{x^3}\left[ {\int_0^{\pi /2} {\cos y} dy} \right]} dx = \int_1^2 {4{x^3}\left( 1 \right)} dx \cr & = \int_1^2 {4{x^3}} dx \cr & {\text{integrating}} \cr & = \left( {{x^4}} \right)_1^2 \cr & {\text{evaluate}} \cr & = {\left( 2 \right)^4} - {\left( 1 \right)^4} \cr & = 16 - 1 \cr & = 15 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.