Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 971: 17

Answer

$$\frac{{117}}{2}$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {\left( {x + 2y} \right)}dA;\,\,\,\,\,\,\,R = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant 3,\,\,\,\,1 \leqslant y \leqslant 4} \right\} \cr & {\text{Convert to an iterated integral substituting the region }}R \cr & = \int_0^3 {\int_1^4 {\left( {x + 2y} \right)} } dydx \cr & = \int_1^3 {\left[ {\int_1^4 {\left( {x + 2y} \right)} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & \int_1^4 {\left( {x + 2y} \right)} dy \cr & = \left[ {xy + {y^2}} \right]_1^4 \cr & {\text{evaluating the limits for the variable }}y \cr & = \left[ {x\left( 4 \right) + {{\left( 4 \right)}^2}} \right] - \left[ {x\left( 1 \right) + {{\left( 1 \right)}^2}} \right] \cr & {\text{simplifying}} \cr & = 4x + 16 - x - 1 \cr & = 3x + 15 \cr & \cr & = \int_0^3 {\left[ {\int_1^4 {\left( {x + 2y} \right)} dy} \right]} dx = \int_0^3 {\left( {3x + 15} \right)} dx \cr & {\text{integrating}} \cr & = \left( {\frac{{3{x^2}}}{2} + 15x} \right)_0^3 \cr & {\text{evaluate}} \cr & = \left( {\frac{{3{{\left( 3 \right)}^2}}}{2} + 15\left( 3 \right)} \right) - \left( {\frac{{3{{\left( 0 \right)}^2}}}{2} + 15\left( 0 \right)} \right) \cr & = \frac{{27}}{2} + 45 \cr & = \frac{{117}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.