Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 35

Answer

$$K = \frac{3}{{25}}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 4t{\bf{i}} + 3\cos t{\bf{j}} + 3\sin t{\bf{k}} \cr & {\text{By Theorem 12}}{\text{.8 }} \cr & {\text{If }}C{\text{ is a smooth curve given by }}{\bf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \cr & C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\bf{r}}'\left( t \right)} \right\|}^3}}} \cr & {\bf{r}}\left( t \right) = 4t{\bf{i}} + 3\cos t{\bf{j}} + 3\sin t{\bf{k}} \cr & {\bf{r}}'\left( t \right) = 4{\bf{i}} - 3\sin t{\bf{j}} + 3\cos t{\bf{k}} \cr & {\bf{r}}''\left( t \right) = 0{\bf{i}} - 3\cos t{\bf{j}} - 3\sin t{\bf{k}} \cr} $$ \[\begin{gathered} {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 4&{ - 3\sin t}&{3\cos t} \\ 0&{ - 3\cos t}&{ - 3\sin t} \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} { - 3\sin t}&{3\cos t} \\ { - 3\cos t}&{ - 3\sin t} \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 4&{3\cos t} \\ 0&{ - 3\sin t} \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 4&{ - 3\sin t} \\ 0&{ - 3\cos t} \end{array}} \right|{\mathbf{k}} \hfill \\ \end{gathered} \] $$\eqalign{ & {\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right) = \left( {9{{\sin }^2}t + 9{{\cos }^2}t} \right){\bf{i}} + 12\sin t{\bf{j}} - 12\cos t{\bf{k}} \cr & {\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right) = 9{\bf{i}} + 12\sin t{\bf{j}} - 12\cos t{\bf{k}} \cr & \left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\| = \sqrt {{9^2} + {{12}^2}{{\sin }^2}t + {{12}^2}{{\cos }^2}t} \cr & \left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\| = \sqrt {225} = 15 \cr & and \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \left\| {4{\bf{i}} - 3\sin t{\bf{j}} + 3\cos t{\bf{k}}} \right\| \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{4^2} + 9{{\sin }^2}t + 9{{\cos }^2}t} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {16 + 9} = 5 \cr & {\text{Therefore,}} \cr & K = \frac{{\left\| {{\bf{r}}'\left( t \right) \times {\bf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\bf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{15}}{{{{\left( 5 \right)}^3}}} \cr & K = \frac{3}{{25}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.