Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 28

Answer

\[K = \frac{{160}}{{91\sqrt {91} }}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = \left\langle {5\cos t,4\sin t} \right\rangle ,{\text{ at }}t = \frac{\pi }{3} \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = \left\langle {5\cos t,4\sin t} \right\rangle \hfill \\ {\mathbf{r}}'\left( t \right) = \left\langle { - 5\sin t,4\cos t} \right\rangle \hfill \\ {\mathbf{r}}''\left( t \right) = \left\langle { - 5\cos t, - 4\sin t} \right\rangle \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ { - 5\sin t}&{4\cos t}&0 \\ { - 5\cos t}&{ - 4\sin t}&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {4\cos t}&0 \\ { - 4\sin t}&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} { - 5\sin t}&0 \\ { - 5\cos t}&0 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} { - 5\sin t}&{4\cos t} \\ { - 5\cos t}&{ - 4\sin t} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left( {20{{\sin }^2}t + 20{{\cos }^2}t} \right){\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = 20 \hfill \\ \left\| {{\mathbf{r}}'\left( {\frac{\pi }{3}} \right) \times {\mathbf{r}}''\left( {\frac{\pi }{3}} \right)} \right\| = 20 \hfill \\ {\left\| {{\mathbf{r}}'\left( t \right)} \right\|^3} = \left\| {\left\langle { - 5\sin t,4\cos t} \right\rangle } \right\| = {\left( {\sqrt {25{{\sin }^2}t + 16{{\cos }^2}t} } \right)^3} \hfill \\ {\left\| {{\mathbf{r}}'\left( {\frac{\pi }{3}} \right)} \right\|^3} = {\left( {\sqrt {25{{\sin }^2}\left( {\frac{\pi }{3}} \right) + 16{{\cos }^2}\left( {\frac{\pi }{3}} \right)} } \right)^3} = \frac{{91\sqrt {91} }}{8} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\text{Evaluate at }}t = \frac{\pi }{3} \hfill \\ K = \frac{{20}}{{\frac{{91\sqrt {91} }}{8}}} \hfill \\ K = \frac{{160}}{{91\sqrt {91} }} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.