Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 1

Answer

$$s = 3\sqrt {10} $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = 3t{\bf{i}} - t{\bf{j}},{\text{ }}\left[ {0,3} \right] \cr & {\text{Differentiate }}{\bf{r}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {3t{\bf{i}} - t{\bf{j}}} \right] \cr & {\bf{r}}'\left( t \right) = 3{\bf{i}} - {\bf{j}} \cr & {\text{Find }}\left\| {{\bf{r}}'\left( t \right)} \right\| \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( 3 \right)}^2} + {{\left( { - 1} \right)}^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {10} \cr & {\text{Find the arc length }}s{\text{ using the formula }}s = \int_a^b {\left\| {{\bf{r}}'\left( t \right)} \right\|} dt \cr & s = \int_0^3 {\sqrt {10} } dt \cr & {\text{Integrate}} \cr & s = \left[ {\sqrt {10} t} \right]_0^3 \cr & s = 3\sqrt {10} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.