Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 25

Answer

$$K = \frac{{\sqrt 2 }}{2}$$

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + \frac{1}{t}{\mathbf{j}},{\text{ at }}t = 1 \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + \frac{1}{t}{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = {\mathbf{i}} - \frac{1}{{{t^2}}}{\mathbf{j}} \hfill \\ {\mathbf{r}}''\left( t \right) = \frac{2}{{{t^3}}}{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 1&{ - \frac{1}{{{t^2}}}}&0 \\ 0&{\frac{2}{{{t^3}}}}&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} { - \frac{1}{{{t^2}}}}&0 \\ {\frac{2}{{{t^3}}}}&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 1&{ - \frac{1}{{{t^2}}}} \\ 0&{\frac{2}{{{t^3}}}} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \frac{2}{{{t^3}}}{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \frac{2}{{{t^3}}} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{\frac{2}{{{t^3}}}}}{{{{\left\| {{\mathbf{i}} - \frac{1}{{{t^2}}}{\mathbf{j}}} \right\|}^3}}} = \frac{{2/{t^3}}}{{{{\left( {\sqrt {\left( 1 \right) + {{\left( {\frac{1}{{{t^2}}}} \right)}^2}} } \right)}^3}}} \hfill \\ {\text{Evaluate at }}t = 1 \hfill \\ K = \frac{{2/{{\left( 1 \right)}^3}}}{{{{\left( {\sqrt {\left( 1 \right) + {{\left( {\frac{1}{{{{\left( 1 \right)}^2}}}} \right)}^2}} } \right)}^3}}} = \frac{2}{{{{\left( {\sqrt 2 } \right)}^3}}} \hfill \\ K = \frac{{\sqrt 2 }}{2} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.