Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 29

Answer

\[K = \frac{1}{4}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = 4\cos 2\pi t{\mathbf{i}} + 4\sin 2\pi t{\mathbf{j}} \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = 4\cos 2\pi t{\mathbf{i}} + 4\sin 2\pi t{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = 4\left( { - 2\pi \sin 2\pi t} \right){\mathbf{i}} + 4\left( {2\pi \cos 2\pi t} \right){\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = - 8\pi \sin 2\pi t{\mathbf{i}} + 8\pi \cos 2\pi t{\mathbf{j}} \hfill \\ {\mathbf{r}}''\left( t \right) = - 16{\pi ^2}\cos 2\pi t{\mathbf{i}} - 16{\pi ^2}\sin 2\pi t{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ { - 8\pi \sin 2\pi t}&{8\pi \cos 2\pi t}&0 \\ { - 16{\pi ^2}\cos 2\pi t}&{ - 16{\pi ^2}\sin 2\pi t}&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {8\pi \cos 2\pi t}&0 \\ { - 16{\pi ^2}\sin 2\pi t}&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} { - 8\pi \sin 2\pi t}&0 \\ { - 16{\pi ^2}\cos 2\pi t}&0 \end{array}} \right|{\mathbf{j}} \hfill \\ + \left| {\begin{array}{*{20}{c}} { - 8\pi \sin 2\pi t}&{8\pi \cos 2\pi t} \\ { - 16{\pi ^2}\cos 2\pi t}&{ - 16{\pi ^2}\sin 2\pi t} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left( {128{\pi ^3}{{\sin }^2}2\pi t + 128{\pi ^3}{{\cos }^2}2\pi t} \right){\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 128{\pi ^3}\left( {{{\sin }^2}2\pi t + {{\cos }^2}2\pi t} \right){\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = 128{\pi ^3}{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = 128{\pi ^3} \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| { - 8\pi \sin 2\pi t{\mathbf{i}} + 8\pi \cos 2\pi t{\mathbf{j}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( { - 8\pi \sin 2\pi t} \right)}^2} + {{\left( {8\pi \cos 2\pi t} \right)}^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {64{\pi ^2}{{\sin }^2}2\pi t + 64{\pi ^2}{{\cos }^2}2\pi t} = 8\pi \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{128{\pi ^3}}}{{{{\left( {8\pi } \right)}^3}}} \hfill \\ K = \frac{1}{4} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.