Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 33

Answer

\[K = \frac{{\sqrt 5 }}{{{{\left( {\sqrt {1 + 5{t^2}} } \right)}^3}}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + {t^2}{\mathbf{j}} + \frac{{{t^2}}}{2}{\mathbf{k}} \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + {t^2}{\mathbf{j}} + \frac{{{t^2}}}{2}{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) = {\mathbf{i}} + 2t{\mathbf{j}} + t{\mathbf{k}} \hfill \\ {\mathbf{r}}''\left( t \right) = 2{\mathbf{j}} + {\mathbf{k}} \hfill \\ \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 1&{2t}&t \\ 0&2&1 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {2t}&t \\ 2&1 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 1&t \\ 0&1 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 1&{2t} \\ 0&2 \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left( {2t - 2t} \right){\mathbf{i}} - \left( {1 - 0} \right){\mathbf{j}} + \left( {2 - 0} \right){\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = - {\mathbf{j}} + 2{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \sqrt {{1^2} + {2^2}} = \sqrt 5 \hfill \\ and \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \left\| {{\mathbf{i}} + 2t{\mathbf{j}} + t{\mathbf{k}}} \right\| \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {1 + 4{t^2} + {t^2}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right)} \right\| = \sqrt {1 + 5{t^2}} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} = \frac{{\sqrt 5 }}{{{{\left( {\sqrt {1 + 5{t^2}} } \right)}^3}}} \hfill \\ K = \frac{{\sqrt 5 }}{{{{\left( {\sqrt {1 + 5{t^2}} } \right)}^3}}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.