Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 12

Answer

$$s = \sqrt {29} \pi $$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {2\sin t,5t,2\cos t} \right\rangle ,{\text{ }}\left[ {0,\pi } \right] \cr & {\text{Differentiate }}{\bf{r}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle {2\sin t,5t,2\cos t} \right\rangle } \right] \cr & {\bf{r}}'\left( t \right) = \left\langle {2\cos t,5, - 2\sin t} \right\rangle \cr & {\text{Find }}\left\| {{\bf{r}}'\left( t \right)} \right\| \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( {2\cos t} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 2\sin t} \right)}^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {4{{\cos }^2}t + 25 + 4{{\sin }^2}t} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {4 + 25} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {29} \cr & {\text{Find the arc length }}s{\text{ using the formula }}s = \int_a^b {\left\| {{\bf{r}}'\left( t \right)} \right\|} dt \cr & s = \int_0^\pi {\sqrt {29} } dt \cr & {\text{Integrate }} \cr & s = \left[ {\sqrt {29} t} \right]_0^\pi \cr & s = \sqrt {29} \pi \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.