Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 14

Answer

$$s = \frac{{\sqrt 5 }}{{16}}{\pi ^2}$$

Work Step by Step

$$\eqalign{ & {\bf{r}}\left( t \right) = \left\langle {\cos t + t\sin t,\sin t - t\cos t,{t^2}} \right\rangle ,{\text{ }}\left[ {0,\frac{\pi }{2}} \right] \cr & {\text{Differentiate }}{\bf{r}}\left( t \right) \cr & {\bf{r}}'\left( t \right) = \frac{d}{{dt}}\left[ {\left\langle {\cos t + t\sin t,\sin t - t\cos t,{t^2}} \right\rangle } \right] \cr & {\bf{r}}'\left( t \right) = \left\langle { - \sin t + \sin t + t\cos t,\cos t - \cos t + t\sin t,2t} \right\rangle \cr & {\bf{r}}'\left( t \right) = \left\langle {t\cos t,t\sin t,2t} \right\rangle \cr & {\text{Find }}\left\| {{\bf{r}}'\left( t \right)} \right\| \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{{\left( {t\cos t} \right)}^2} + {{\left( {t\sin t} \right)}^2} + {{\left( {2t} \right)}^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{t^2}{{\cos }^2}t + {t^2}{{\sin }^2}t + 4{t^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {{t^2}\left( {{{\cos }^2}t + {{\sin }^2}t} \right) + 4{t^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt {5{t^2}} \cr & \left\| {{\bf{r}}'\left( t \right)} \right\| = \sqrt 5 t \cr & {\text{Find the arc length }}s{\text{ using the formula }}s = \int_a^b {\left\| {{\bf{r}}'\left( t \right)} \right\|} dt \cr & s = \int_0^{\pi /2} {\sqrt 5 t} dt \cr & {\text{Integrate }} \cr & s = \sqrt 5 \left[ {\frac{{{t^2}}}{2}} \right]_0^{\pi /2} \cr & s = \frac{{\sqrt 5 }}{2}\left( {\frac{{{\pi ^2}}}{8}} \right) \cr & s = \frac{{\sqrt 5 }}{{16}}{\pi ^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.