Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 26

Answer

\[K = \frac{{36}}{{125}}\]

Work Step by Step

\[\begin{gathered} {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + \frac{1}{9}{t^3}{\mathbf{j}},{\text{ at }}t = 2 \hfill \\ {\text{By Theorem 12}}{\text{.8 }} \hfill \\ {\text{If }}C{\text{ is a smooth curve given by }}{\mathbf{r}}\left( t \right),{\text{ then the curvature }}K{\text{ of}} \hfill \\ C{\text{ at }}t{\text{ is }}K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\mathbf{r}}\left( t \right) = t{\mathbf{i}} + \frac{1}{9}{t^3}{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) = {\mathbf{i}} + \frac{1}{3}{t^2}{\mathbf{j}} \hfill \\ {\mathbf{r}}''\left( t \right) = \frac{2}{3}t{\mathbf{j}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}} \\ 1&{\frac{1}{3}{t^2}}&0 \\ 0&{\frac{2}{3}t}&0 \end{array}} \right| \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \left| {\begin{array}{*{20}{c}} {\frac{1}{3}{t^2}}&0 \\ {\frac{2}{3}t}&0 \end{array}} \right|{\mathbf{i}} - \left| {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right|{\mathbf{j}} + \left| {\begin{array}{*{20}{c}} 1&{\frac{1}{3}{t^2}} \\ 0&{\frac{2}{3}t} \end{array}} \right|{\mathbf{k}} \hfill \\ {\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right) = \frac{2}{3}t{\mathbf{k}} \hfill \\ \left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\| = \frac{2}{3}t \hfill \\ \left\| {{\mathbf{r}}'\left( 2 \right) \times {\mathbf{r}}''\left( 2 \right)} \right\| = \frac{2}{3}\left( 2 \right) = \frac{4}{3} \hfill \\ {\left\| {{\mathbf{r}}'\left( t \right)} \right\|^3} = \left\| {{\mathbf{i}} + \frac{1}{3}{t^2}{\mathbf{j}}} \right\| = {\left( {\sqrt {1 + {{\left( {\frac{1}{3}{t^2}} \right)}^2}} } \right)^3} \hfill \\ {\left\| {{\mathbf{r}}'\left( 2 \right)} \right\|^3} = {\left( {\sqrt {1 + {{\left( {\frac{1}{3}{{\left( 2 \right)}^2}} \right)}^2}} } \right)^3} = {\left( {\sqrt {\frac{{25}}{9}} } \right)^3} = \frac{{125}}{{27}} \hfill \\ {\text{Therefore,}} \hfill \\ K = \frac{{\left\| {{\mathbf{r}}'\left( t \right) \times {\mathbf{r}}''\left( t \right)} \right\|}}{{{{\left\| {{\mathbf{r}}'\left( t \right)} \right\|}^3}}} \hfill \\ {\text{Evaluate at }}t = 1 \hfill \\ K = \frac{{4/3}}{{125/27}} \hfill \\ K = \frac{{36}}{{125}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.