Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.5 Exercises - Page 860: 24

Answer

$K=0$

Work Step by Step

\[\begin{align} & \mathbf{r}\left( t \right)={{t}^{2}}\mathbf{i}+\mathbf{j},\text{ at }t=2 \\ & \text{We use the Theorem which states}\\ & \text{If }C\text{ is a smooth curve given by }\mathbf{r}\left( t \right),\text{ then the curvature }K\text{ of} \\ & C\text{ at }t\text{ is }K=\frac{\left\| \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right) \right\|}{{{\left\| \mathbf{r}'\left( t \right) \right\|}^{3}}} \\ & \mathbf{r}\left( t \right)={{t}^{2}}\mathbf{i}+\mathbf{j} \\ & \text{Differentiating} \\ & \mathbf{r}'\left( t \right)=2t\mathbf{i} \\ & \mathbf{r}''\left( t \right)=2\mathbf{i} \\ & \text{Find the cross product and then use the curvature formula} \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=\left| \begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2t & 0 & 0 \\ 2 & 0 & 0 \\ \end{matrix} \right| \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=\left| \begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix} \right|\mathbf{i}-\left| \begin{matrix} 2t & 0 \\ 2 & 0 \\ \end{matrix} \right|\mathbf{j}+\left| \begin{matrix} 2t & 0 \\ 2 & 0 \\ \end{matrix} \right|\mathbf{k} \\ & \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right)=0 \\ & \text{Therefore}\text{,} \\ & K=\frac{\left\| \mathbf{r}'\left( t \right)\times \mathbf{r}''\left( t \right) \right\|}{{{\left\| \mathbf{r}'\left( t \right) \right\|}^{3}}}=\frac{0}{{{\left\| 2t\mathbf{i} \right\|}^{3}}} \\ & K=0 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.