Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 8

Answer

$\frac{{3{x^{4/3}}}}{4} + \frac{{3{x^{2/3}}}}{2} + C$

Work Step by Step

$$\eqalign{ & \int {\left( {\root 3 \of x + \frac{1}{{\root 3 \of x }}} \right)} dx \cr & {\text{Rewrite the integrand using the radical properties}} \cr & = \int {\left( {{x^{1/3}} + \frac{1}{{{x^{1/3}}}}} \right)} dx \cr & = \int {\left( {{x^{1/3}} + {x^{ - 1/3}}} \right)} dx \cr & {\text{Use the sum rule for integration}} \cr & = \int {{x^{1/3}}} dx + \int {{x^{ - 1/3}}} dx \cr & {\text{Use the power rule for integration }}\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C \cr & = \frac{{{x^{1/3 + 1}}}}{{1/3 + 1}} + \frac{{{x^{ - 1/3 + 1}}}}{{ - 1/3 + 1}} + C \cr & {\text{Simplifying}} \cr & = \frac{{{x^{4/3}}}}{{4/3}} + \frac{{{x^{2/3}}}}{{2/3}} + C \cr & = \frac{{3{x^{4/3}}}}{4} + \frac{{3{x^{2/3}}}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.