Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 3

Answer

See proof

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{{x^2}\sqrt {1 + {x^2}} }}} dx = - \frac{{\sqrt {1 + {x^2}} }}{x} + C \cr & {\text{Let }}F\left( x \right) = - \frac{{\sqrt {1 + {x^2}} }}{x} + C\cr &{\text{ We will show that F is an antiderivative of }}\frac{1}{{{x^2}\sqrt {1 + {x^2}} }} \cr & {\text{Differentiating }\left[ { - \frac{{\sqrt {1 + {x^2}} }}{x} + C} \right] } \cr & \underbrace {\frac{d}{{dx}}\left[ { - \frac{{\sqrt {1 + {x^2}} }}{x}} \right]}_{{\text{Use the quotient rule}}} + \frac{d}{{dx}}\left[ C \right] \cr & {\text{computing derivatives}} \cr & = - \frac{{x\left( {\frac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} \left( 1 \right)}}{{{x^2}}} + 0 \cr & {\text{Simplifying}} \cr & = - \frac{{\frac{{{x^2}}}{{\sqrt {1 + {x^2}} }} - \sqrt {1 + {x^2}} }}{{{x^2}}} \cr & = - \frac{{{x^2} - 1 - {x^2}}}{{{x^2}\sqrt {1 + {x^2}} }} \cr & = - \frac{{ - 1}}{{{x^2}\sqrt {1 + {x^2}} }} \cr & =\frac{1}{{{x^2}\sqrt {1 + {x^2}} }} \cr & {\text{The statement is true}}{\text{, then the formula is correct}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.