Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 415: 5

Answer

${x^3} +2{x^2} + x + C$

Work Step by Step

$$\eqalign{ & \int {\left( {3{x^2} + 4x + 1} \right)} dx \cr & {\text{Use the sum rule for integration}} \cr & = \int {3{x^2}} dx + \int {4xdx} + \int {dx} \cr & {\text{Pull out the constants}} \cr & = 3\int {{x^2}} dx + 4\int {xdx} + \int {dx} \cr & {\text{Use the power rule for integration }}\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C \cr & = 3\left( {\frac{{{x^{2 + 1}}}}{{2 + 1}}} \right) + 4\left( {\frac{{{x^{1 + 1}}}}{{1 + 1}}} \right) + \frac{{{x^{0 + 1}}}}{{0 + 1}} + C \cr & {\text{Simplify}} \cr & = 3\left( {\frac{{{x^3}}}{3}} \right) + 4\left( {\frac{{{x^2}}}{2}} \right) + x + C \cr & = {x^3} + 2{x^2} + x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.